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Abstract
The rapid spread of fake news through social media and online platforms poses significant challenges to public
discourse and democratic processes. Traditional fact-checking methods, while effective, cannot keep pace with
the vast influx of digital content. To address this issue, we propose a novel, domain-agnostic framework for
automated fake news detection (AFND) using large language models (LLMs) and search engine integration. Unlike
domain-specific solutions, our approach verifies claims against evidence collected from a dynamically generated
set of evidence, leveraging LLMs to assess the truthfulness of the input by comparing it with authoritative
sources. Our framework emphasizes explainability, providing users with clear, evidence-based reasoning for its
classifications. This transparency is crucial in building trust and complying with regulations, such as the EU
Digital Services Act, which demands both content monitoring and justification of decisions. The system supports
multilingual and multimodal capabilities, enhancing its versatility across various contexts. Through empirical
evaluation of datasets such as Politifact and Liar, we demonstrate significant improvements in accuracy, precision,
recall, and F1 scores when knowledge augmentation is applied. Our results highlight the potential of LLM-driven
solutions in the ongoing fight against disinformation, offering a scalable, explainable tool for automated fake
news detection.
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1. Introduction

Fake news, defined as intentionally misleading or false information presented as factual [1], has become a
significant issue in the digital era [2]. Social media platforms facilitate the rapid spread of misinformation,
amplifying its reach and impact on public discourse, democratic processes, and societal trust [3]. The
algorithmic nature of online platforms further exacerbates the problem, often prioritizing engagement
over accuracy, making it increasingly difficult for individuals to distinguish truth from falsehood. Given
the vast volume of online content, manual fact-checking alone is insufficient to address the scale of the
issue [4, 5]. Automated Fake News Detection (AFND) has emerged as a crucial solution for countering
misinformation [6]. By leveraging machine learning (ML) and natural language processing (NLP), these
systems can analyze large volumes of data in real-time, comparing claims against credible sources
to assess their accuracy [2]. However, for AFND to be effective and widely adopted, explainability is
essential [7]. Users must understand why content is flagged as misinformation, particularly in high-
stakes areas such as elections or public health. Explainable AI (XAI) methods, including those powered
by large language models (LLMs), enhance transparency by providing interpretable justifications for
decisions, increasing user trust and system reliability.

Recent regulatory developments, such as the European Union’s Digital Services Act (DSA) [8]
and the 2022 Code of Practice on Disinformation, emphasize both the detection and transparency of
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misinformation. These regulations impose obligations on large platforms to combat disinformation
while ensuring clear explanations for content moderation decisions. In this context, we propose a novel,
domain-agnostic AFND approach that bypasses traditional training processes. Our method gathers
relevant articles from the web as evidence for claim verification, leveraging LLMs to interpret and
validate information against the collected evidences. This framework enables scalable, explainable
misinformation detection, which we detail further in the following sections.

2. Background

In this section, we introduce basic notions that are useful for understanding the proposed framework.

2.1. Collected Evidence

Fact-checking against collected evidence involves comparing a claim with retrieved information to
assess its accuracy. Our approach dynamically gathers evidence by querying search engines in real-time,
ensuring up-to-date verification as facts evolve. This method offers two key advantages: (1) it avoids
reliance on outdated or static data, and (2) it leverages search engine rankings to focus on the top 𝑘
most relevant results, enhancing efficiency and credibility.

We primarily use Google due to its robust ranking algorithm, which evaluates page authority based
on link quality and quantity. This ensures that retrieved evidence is both relevant and authoritative.

No data is stored or retained; all retrieved information is used solely for validation and discarded
immediately, ensuring privacy and compliance with data protection laws.

2.2. Generative AI and Large Language Models (LLMs)

Generative Artificial Intelligence is a subset of traditional machine learning, where models extract
patterns from vast datasets to generate new content. Large language models (LLMs) are trained on
trillions of words over weeks or months, developing billions of parameters and emergent capabilities
beyond basic language processing.

LLMs are primarily based on the transformer architecture, leveraging attention mechanisms [9] like
self-attention and multi-head attention to enhance text understanding. These mechanisms improve
context awareness, long-range dependency capture, and nuanced interpretation. In this work, we
compare different LLM architectures within our framework.

3. Related Work

Automated Fake News Detection (AFND) has gained attention due to the spread of misinformation on
social media [10]. Initially, it was tackled as a binary classification problem using machine learning
models, later improving with deep learning approaches such as Bi-GRUs [? ]. Pre-trained language
models have further enhanced performance, incorporating techniques like Knowledgeable Prompt
Learning [11] and knowledge graph integration [12]. Few-Shot AFND (FSAFND) remains a challenge,
relying on large language models (LLMs) for in-context learning [12, 13]. However, LLMs face issues such
as ambiguity and hallucinations [14]. Recent efforts mitigate these limitations by incorporating external
evidence [15] or generating justifications for classifiers [16]. The Dual-Perspective Augmented Fake
News Detection model [17] exemplifies this approach by integrating internal and external knowledge.
Beyond accuracy, explainability is crucial for fostering trust in AFND systems [7, 18]. Explainable AI
(XAI) methods enhance transparency by generating interpretable justifications.

4. Proposed Approach

The proposed approach leverages the integration of search engine tools and incorporates LLM technology
for fake news detection. LLM can extract information from local files as well as single and multiple web



pages. These data are then processed by LLMs, which have the ability to understand and analyse natural
language in an advanced manner. Thanks to these models, every statement contained in potentially fake
content can be assessed for truthfulness. In this context, claim verification is performed by comparing
the collected information with authoritative and reliable sources.

In our approach, the proposed system simulates human fact-checking behaviour by gathering relevant
information from a wide range of websites and online sources. It then evaluates the truthfulness of
a given statement by cross-referencing the collected data with the claim, much like a human would
consult multiple sources to verify a fact. While this process involves retrieving and assessing potential
evidence, inconsistencies among the retrieved information may arise due to variations in content across
sources. Although we acknowledge that such inconsistencies can affect the final judgment, our current
approach relies on the LLM’s capacity to resolve them. We plan to extensively analyse this issue in
future work to refine our method and further improve the reliability of fact-checking.

The news/fact to be verified is given as input into the system. Search engine APIs are used to retrieve
a list of websites that are related to the input. These websites will be used as a evidence for validating
the input.

The validation process takes place through a comparative analysis between the claims extracted
from potentially misleading texts and the official documents listed above. This rigorous approach
ensures that every claim is verified with reliable sources, minimising the risk of spreading false or
misleading information. In this way, the methodology provides a detailed description of the contents,
highlighting both the accurate and potentially deceptive components. This detailed analysis facilitates
the classification of information, helping users discern between reliable news and fake news.

Below are the macro-elements that compose the framework: 1. Search Engine: The first step of
the process consists of collecting various website pages that are related to the input. Each URL is
saved in a temporary dataset. The user can specify URLs that should be blacklisted and thus removed
and not considered in the collected evidence. 2. Collected Evidence: The data collected from the
web undergoes a verification and validation process to ensure the reliability of the sources (blacklist
control). The LLM will use this data to compare and evaluate the claim, ensuring that the analysis is
based on accurate and up-to-date information related to the topic addressed. The information collection
algorithm is designed to "vote" for the most semantically relevant source. 3. LLM textual inference:
The input is compared with information from the collected evidence. These sources are scalable based
on the context so that the appropriate collected evidence can be selected as needed. The system is able to
determine whether each claim is true, false, or unverifiable, providing a complete and precise response.
This is done through an in-depth contextual analysis that takes multiple variables and linguistic nuances
into account. 4. Prediction: The framework generates an outcome reporting whether the framework
does not have enough information for classifying the claim or whether the claim is real or fake given
the collected evidence. In the latter case, the system also provides an explanation about the validation
of the claim, explaining why the claim is classified in a given class and what parts of the collected
evidence refute or support the claim.

4.1. Multilingualism and Multimodality

The number of languages supported by the tool depends closely on the selected LLM model. For instance,
the GPT-4o model that could be adopted by the system supports 50 languages, covering 97% of the
languages spoken worldwide1. Furthermore, many LLMs are multimodal, accepting input not only
in the form of text but also in video, image, and sound. This multimodal capability makes the tool
extremely versatile and powerful, enhancing user interaction and expanding the possibilities for use in
various contexts and applications.

In this work, we only test input in the form of text, leaving other content types as future work.

1https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/ - Last visited 9 October 2024



5. Empirical Evaluation

In this section, we detail the LLM models as well as the datasets adopted to assess the performance. In
the end, we describe the empirical evaluation of our proposed approach. First, we check whether each
baseline model is able to predict if an input statement is real or fake, and then we provide LLMs with
some evidence about the input. This allows us to compare the performance and test if the evidence is
useful to classify the input and improves the performance of the model. Moreover, we compare the
ability to provide an explanation with or without evidence.

5.1. Large Language Models (LLMs)

In the experiments, we adopted several different Large Language Models (LLMs) to compare their
performance and assess the extent to which the choice of model influences the final outcomes. Below is
a list of the models used in our study, accompanied by a brief description of their key characteristics
and features:

1. mistral-7b-instruct-v0.3-bnb-4bit2: This model employs sliding window attention, where each
layer attends to the previous 4,096 hidden states. This architecture achieves linear computational
complexity and a 2x speedup for sequences of up to 16k tokens with a 4k window while also reducing
cache memory usage by 50% for sequences of 8,192 tokens without degrading model performance. It is
designed for highly efficient processing of long-context documents, making it ideal for fact-checking
and other tasks requiring extensive input sequences. Despite being quantised to 4 bits, it retains
strong performance, particularly in instruction-following tasks. 2. Phi-3-Mini-128K-Instruct3: This
model has 3.8 billion parameters, is part of the Phi-3 family, and is designed for lightweight yet
high-performance tasks. It was trained on the Phi-3 dataset, which consists of both synthetic and
high-quality public data with an emphasis on reasoning abilities. The model supports both 4K and
128K token context lengths, making it highly versatile. Its fine-tuning included preference optimisation
to enhance instruction-following behaviour and adherence to safety protocols. Phi-3-Mini excels in
areas like common sense reasoning, language understanding, math, coding, long-term context handling,
and logical reasoning, performing competitively against models with up to 13 billion parameters.
3. GPT-4o mini: GPT-4o mini is a smaller variant of the GPT-4 architecture, optimised for tasks
requiring general-purpose language understanding. Despite its smaller parameter count compared
to full-scale GPT models, it retains much of the versatility of GPT-4, performing well across diverse
tasks, including language comprehension, reasoning, and fact-checking. Its performance is particularly
notable in contexts where computational resources are limited but where multi-turn reasoning and
instruction-following are crucial. 4. gemma2-9b-it4: This 9-billion-parameter model is specifically
optimised for high-level reasoning across multilingual datasets. The gemma2-9b-it model balances
large-scale language understanding with efficiency, making it suitable for scenarios requiring rich
semantic analysis in multiple languages. Its training includes a focus on factual accuracy, with the
model excelling in both general-purpose NLP tasks and domain-specific knowledge applications. It
shows robust performance in classification tasks, such as fact-checking, where detailed contextual
understanding is required. 5. LLaMA3-8b-81925: it is an 8-billion-parameter model from Meta’s latest
LLaMA series, optimised for longer sequences with an 8,192-token context window. This expanded
context window makes it particularly well-suited for handling long-range dependencies in tasks like
document-level fact-checking, legal document processing, and scientific text analysis. The model
balances large-scale language understanding with efficiency, and its architecture is optimised to maintain
performance while handling long contexts. It excels at instruction-following and has demonstrated
strong results in tasks involving factual reasoning, general knowledge, and commonsense reasoning.
Its 8k token capacity allows it to process extensive inputs while preserving high inference speed and

2https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit - Last visited 30 September 2024
3https://huggingface.co/microsoft/Phi-3-mini-128k-instruct - Last visited 9 October 2024
4https://huggingface.co/google/gemma-2-9b-it - Last visited 12 October 2024
5https://huggingface.co/unsloth/llama3-8b-8192 - Last visited 12 October 2024



accuracy.
The above models were selected for their diverse strengths in areas such as context-length handling,

instruction-following, multilingual capabilities, and reasoning. By using this range of models, we aim
to determine the impact of model choice on the accuracy and robustness of the results across different
datasets and tasks.

5.2. Datasets

In order to evaluate our proposed approach, we tested our approach on different datasets that are
commonly used in the literature. In particular, we adopted the following datasets: 1. PolitiFact[19]: A
widely-used fact-checking dataset that contains real-world claims and their corresponding truthfulness
ratings, derived from the PolitiFact website. It focuses on political statements made by public figures,
covering a variety of topics. 2. Liar[20]: A dataset composed of short statements labelled for their
truthfulness, sourced from fact-checking websites. The dataset contains 12,836 short statements in
English collected in a grounded, more natural context, such as political debate, TV ads, Facebook
posts, tweets, interviews, news releases, and many others. 3. Weibo21[21]: this dataset focuses on
fact-checking claims across multiple domains, including Science, Military, Education, Accidents, Politics,
Health, Finance, Entertainment, and Society. It is structured to assess a system’s ability to handle both
fact verification and claim validation tasks, making it a comprehensive benchmark for multi-domain
fact-checking systems. The dataset is in Chinese.

We utilized balanced subsets of each dataset: for PolitiFact and Liar datasets, we randomly sampled
150 true and 150 false claims, resulting in a total of 300 samples per dataset. For the Weibo21 dataset,
given its multi-domain nature, we adopted a stratified sampling strategy to maintain class balance
within each category. Specifically, we selected around 18-20 samples true claims per category and 18-20
false claims per category. This resulted in a balanced distribution of claims for each category in the
dataset.

When performing a query, the results returned by a search engine are not always consistent. This
variability can be attributed to changes in the indexed content and inherent randomness in the search
engine’s algorithms. To ensure consistency in the evidence used by large language models during
experiments, particularly when comparing different models, we took a controlled approach. For each
sample in our dataset, we retrieved and stored the search results from the chosen search engine at the
time of collection. This guarantees that all models are evaluated using the same evidence, regardless of
when or how often the experiment is repeated.

5.3. Metrics

Each model was evaluated in two configurations: Baseline, i.e., a vanilla version without additional
knowledge and Knowledge Injection (KI), where external knowledge from articles is previously
injected.

We employed standard accepted metrics, namely precision, recall, F1 score, and accuracy, as perfor-
mance indicators.

In our evaluation, we compute various performance metrics based on the number of articles 𝑘 used
to support the inference process. However, in some cases, the total number of available articles 𝑁
may be less than the desired 𝑘. To handle this, we calculate the metrics using the actual number of
articles available, denoted by 𝑛, where 𝑛 = min(𝑘,𝑁). This ensures that when 𝑘 exceeds the number
of available articles, the metric is computed using all available data.

5.4. Performance on Different Datasets

Table 1 presents the performance values for the different models on the three datasets considered.
Each model’s performance is evaluated under baseline conditions and various Knowledge Injection (KI)
configurations using 𝐾 = 3, 𝐾 = 5, and 𝐾 = 7.



Table 1
Performance values for the different models of the three datasets. For each model, metric, and dataset,
the best value is in bold.

Politifact Liar Weibo21

Model Config. Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

GPT4o mini

Baseline 0.55 0.51 0.77 0.62 0.53 0.49 0.74 0.59 0.67 0.78 0.48 0.60
K = 3 0.88 0.83 0.92 0.87 0.73 0.78 0.50 0.62 0.59 0.57 0.82 0.67
K = 5 0.87 0.84 0.92 0.88 0.73 0.78 0.50 0.62 0.59 0.56 0.85 0.68
K = 7 0.87 0.83 0.91 0.87 0.72 0.78 0.50 0.61 - - - -

Phi3 mini

Baseline 0.69 0.70 0.58 0.63 0.55 0.53 0.75 0.62 0.62 0.65 0.55 0.60
K = 3 0.86 0.90 0.85 0.88 0.61 0.58 0.80 0.67 0.68 0.70 0.65 0.67
K = 5 0.84 0.90 0.84 0.87 0.63 0.58 0.82 0.68 0.67 0.68 0.64 0.66
K = 7 0.86 0.90 0.85 0.87 - - - - - - - -

Mistral 7b

Baseline 0.53 0.50 0.67 0.57 0.56 0.55 0.67 0.60 0.55 0.50 0.60 0.55
K = 3 0.63 0.72 0.64 0.67 0.58 0.25 0.96 0.39 0.62 0.60 0.65 0.62
K = 5 0.61 0.69 0.62 0.65 0.58 0.23 0.87 0.36 0.60 0.58 0.63 0.60
K = 7 0.60 0.68 0.61 0.64 - - - - - - - -

LLaMA 8B

Baseline 0.53 0.52 0.87 0.65 0.64 0.65 0.91 0.75 0.64 0.70 0.54 0.61
K = 3 0.79 0.80 0.62 0.70 0.88 0.83 0.92 0.87 0.59 0.56 0.73 0.64
K = 5 0.73 0.78 0.51 0.61 0.88 0.84 0.92 0.88 0.58 0.55 0.72 0.63
K = 7 0.74 0.79 0.51 0.62 0.89 0.84 0.93 0.88 - - - -

Gemma2 9b

Baseline 0.69 0.75 0.76 0.75 0.62 0.63 0.55 0.59 0.70 0.77 0.60 0.67
K = 3 0.73 0.74 0.81 0.77 0.57 0.56 0.67 0.61 0.70 0.70 0.73 0.72
K = 5 0.67 0.65 0.88 0.75 - - - - - - - -
K = 7 - - - - - - - - - - - -

As seen in Table 1, on the Politifact dataset, all models exhibit performance improvements when
external knowledge is injected. In particular, GPT-4o mini and Phi3-mini show significant improvements
in accuracy, precision, recall, and F1 score with 3 articles, with diminishing returns for more articles.
Mistral 7b and LLaMA 8B also demonstrate enhanced performance with 3 articles, though LLaMA
8B’s recall drops significantly in the 𝐾 = 5 and 𝐾 = 7 configurations. The gemma2-9b-it model
demonstrates competitive performance, particularly in recall with 5 articles. For the final model, it was
not possible to run the experiment with 𝐾 = 7 due to token length limitations.

Mistral 7b performs poorly on the Liar dataset, especially in terms of precision and F1 score for K=3
and K=5, which could be attributed to the model’s inability to focus on relevant information across
multiple retrieved documents (as seen in the high recall but very low precision). This result might
suggest that Mistral struggles with effectively distributing its attention, leading to a large number of
false positives. Additionally, the fact that no results were retrieved for K=7 hints at potential limitations
in handling increased complexity when more documents are involved, further supporting the idea that
its attention mechanism might be less effective for this task.

Overall, Liar seems a much harder dataset as its statements have been collected with the intention of
being difficult to classify.

As presented in Table 1, the estimated performance for Mistral 7b and Phi3-mini follows a similar
trend to their results on the Politifact and Liar datasets, with improvements in accuracy, precision, and
F1 score when additional knowledge is injected.

For the Weibo21 dataset, we evaluated the models’ performance across various categories beyond
political claims. We do not report the results due to space limits. In general, they reveal that Knowledge
Injection improve the accuracy on some categories.

5.5. Discussion

The results clearly demonstrate that external Knowledge Injection (KI) significantly enhances the
performance of all models.



For GPT-4o mini, these gains are most pronounced with the first few articles introduced, but as
more articles are added, the performance plateaus or even declines slightly. This suggests that GPT-4o
mini extracts the most relevant information from the initial articles, while additional sources offer
diminishing returns and may introduce irrelevant or conflicting data, reducing overall effectiveness.

The gemma2-9b-it model’s performance on the Liar dataset shows a competitive baseline but limited
improvement with Knowledge Injection configurations, highlighting the need for further exploration
in optimizing this model for different configurations.

LLaMA 8B demonstrates the most significant improvement on the Liar dataset, particularly in the
cleaned configurations, where it achieves an accuracy of 88.97% with 𝐾 = 5 articles. GPT-4o mini,
Phi3-mini, and Mistral 7b also show considerable gains, though Mistral 7b struggles with precision in
𝐾 = 5 and 𝐾 = 7 configurations, suggesting potential issues with noise in additional articles.

Phi3-mini, Mistral 7b, and LLaMA 8B exhibit robust and steady improvements with the addition
of external articles. This is particularly evident in their recall metrics, where all three models show a
consistent ability to retrieve and utilize relevant information from the growing pool of external sources.
LLaMA 8B, in particular, demonstrates exceptional performance on the Liar dataset, achieving the
highest overall accuracy and F1 score across all configurations. This result suggests that LLaMA 8B is
more adept at processing and integrating a larger volume of external knowledge, making better use of
the supplementary data to enhance its performance without being overwhelmed by noise.

6. Explanation

Beyond classification, the system generates explanations by outlining the evidence supporting its
predictions, ensuring transparency and interpretability. Example 6.1 illustrates how leveraging relevant
evidence enhances both accuracy and justification, reinforcing confidence in the system’s decisions.

Example 6.1. "The past president (Barack Obama) brought Al Sharpton into the White House something
like 80 times."

• Ground Truth Class: REAL

• Predicted Class (with Baseline approach): FAKE

• Explanation (with Baseline approach): The claim that Barack Obama brought Al Sharpton
into the White House "something like 80 times" is exaggerated and misleading. While Al Sharpton
did visit the White House during Obama’s presidency, official records indicate that he visited
approximately 30 times. This includes meetings related to civil rights and social justice issues.
The figure of 80 visits lacks substantiation and seems to overstate Sharpton’s presence at the
White House.

• Predicted Class (with KI approach): REAL

• Explanation (with KI approach): The evidence states that "as of December 2014, Sharpton had
made 72 official recorded visits to the White House." This portion of the evidence supports the
claim by providing a concrete number of visits. Furthermore, the statement indicates that not
all visits were recorded, implying the actual number could be higher. Congressman Grothman
estimated "around 80", which aligns closely with the claim that Al Sharpton was brought into the
White House approximately 80 times. Thus, the claim is validated by the evidence provided.

• Evidence: The following evidence (refined by the model inference) was presented:

"Biden Is Even Worse than Obama (unemployment, Iraq, generation, poll) - Politics and
Other Controversies - Democrats, Republicans, Libertarians, Conservatives, Liberals,
Third Parties, Left-Wing, Right-Wing, Congress, President - Page 4 - City-Data Forum
... Bernadette Green, Grothmanś director of communications, said that as of December



2014, Sharpton had made 72 official recorded visits to the White House. ’Keep in mind
that not all visits were recorded, so that number could be higher, and we have no way
of knowing,’ Green said in an email. ’Congressman Grothman is correct in saying
’around 80’ as he was estimating, and was not too far off the actual number (and again,
these are only the visits recorded up until Dec. 2014).’"

The knowledge-injected (KI) approach shows improvement over the baseline in both examples by
providing more accurate explanations aligned with the evidence, even when the claim classification
is correct. Looking at the ground truth class, in the first case, the KI approach correctly supports the
claim about Al Sharpton’s White House visits with detailed evidence, while the baseline mistakenly
refutes the claim.

In the second example, both approaches correctly classify the R. Kelly claim as FAKE, but the KI
explanation more directly reflects the comprehensive evidence, making it more reliable and detailed.
This result highlights KI’s ability to better leverage evidence for both classification and explanation.

In general, the two examples suggest that LLMs can distil and refine complex information, presenting
it in a concise manner that directly addresses the claim. This characteristics leads to improved readability,
as the evidence is organised and explicitly linked to the claim’s verification or debunking. By synthesising
information in a structured format, LLMs facilitate a better understanding of the relationship between
claims and supporting evidence.

7. Conclusions and Future Work

In this paper, we presented a scalable, domain-agnostic, explainable framework for automated fake
news detection that integrates large language models (LLMs) with search engine tools to verify the
truthfulness of claims. By dynamically generating some evidence from relevant web sources and
comparing claims against these data, the proposed approach addresses the growing challenges posed
by the rapid spread of disinformation in the digital age. The framework also emphasises explainability,
ensuring that users can understand and trust the system’s decisions, which is crucial in sensitive areas
such as political discourse or regulatory compliance.

The empirical evaluation of our approach on the Politifact, Weibo21, and Liar datasets demonstrated
significant performance improvements, especially when leveraging knowledge augmentation. This
result highlights the effectiveness of combining LLMs with external data sources for scalable and
transparent fake news detection.

In future work, we plan to extend our framework to handle more complex, multi-faceted statements.
The current system is optimised for verifying relatively short claims, but many real-world instances of
disinformation involve nuanced or multi-layered assertions that require a deeper level of contextual
understanding and multi-step reasoning. By enhancing the framework to process these more intricate
claims, incorporating advanced LLM-based techniques, and expanding the scope to include multi-modal
content such as images and videos, we aim to further improve the system’s accuracy and robustness.
This expansion will enable the framework to tackle a broader range of fake content, making it an even
more powerful tool in the fight against disinformation.
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