

TOWARDS AUTOMATED FACT-CHECKING FOR DETECTING AND VERIFYING CLAIMS

ROMCIR 2021, 1st April 2021

Arkaitz Zubiaga

2

WHO AM I

- Lecturer, Queen Mary University of London.
- Worked on misinformation research since 2012.
- Currently focusing on a number of related areas:
 - Hate speech detection.
 - Automated fact-checking.
 - Stance detection.

SOCIAL MEDIA & ONLINE NEWS READERSHIP

- UK (2017) Facebook or Twitter used by (ONS):
 - 66% of population.
 - 96% of 16-24 year olds.

Figure 4: Internet activities by age group, 2017, Great Britain

WE CAN GET REAL-TIME, EXCLUSIVE UPDATES

BUT NOT EVERYTHING IS TRUE

frick u @wtfrickyou

EATSIS This shark was found in front of someone's house in New Jersey. #ohmygod #Sandy pic.twitter.com/1B0JqQUr

Reply 13 Retweet * Favorite ... More

2:37 AM - 30 Oct 12

5

Queen Mary University of London

BUT NOT EVERYTHING IS TRUE

When news of the missing EgyptAir flight emerged on Thursday morning people began sharing details of the unfolding story - but not everything was genuine.

Timeline of Orlando Nightclub Attack

24

Colum AL HERE and BRENT MEETINGED (has 10, 0016 (10.00)	10 mm	£2 ******
must hilled as possile and recented to more to an attack at the Poles matrixish as Orlando.	() 10004 .	*
andy Danday		
664 Annuel Ormole Gamman Allactic Gay Hightight, Lauring 10 Gean		-

6

- Fact-checking social media content is challenging.
 - Huge volume of content, where not everything needs verification.
 - Widely studied as: fake vs real classification.
 - But what is the input to this classifier?

• Let's build automated fact-checking systems that:

1) Detect pieces of information **needing verification** (checkworthy).

2) Make judgements on checkworthy pieces of info.

3) Use this to **assist humans**.

- Example of Twitter timeline:
 - I want to have a coffee now.
 - Yesterday there were 5,000 new cases of COVID-19 in the UK.
 - I hate COVID-19 and the lockdown.
 - Good morning everyone!
 - Today is Thursday.

- Example of Twitter timeline:
 - I want to have a coffee now. [not checkworthy]
 - Yesterday there were 5,000 new cases of COVID-19 in the UK. [checkworthy]
 - I hate COVID-19 and the lockdown. [not checkworthy]
 - Good morning everyone! [not checkworthy]
 - Today is Thursday. [??]

CONFLATION OF TERMS

- Misinformation.
- Disinformation.
- Hoaxes.
- Fake News.
- Rumours.

CONFLATION OF TERMS

- Misinformation: inaccurate, no intent to deceive.
- **Disinformation:** inaccurate, there is intent to deceive.
- Hoaxes: false story used to masquerade the truth, originating from the verb hocus, meaning "to cheat"
- Fake News: not 100% clear; fabricated news articles, parody, etc. (?)
- **Rumours:** piece of information that starts of as an unverified statement. Might be eventually resolved.

CONFLATION OF TERMS

- Misinformation.
- Disinformation.

Always false.

- Hoaxes.
- Fake News.
- **Rumours.** > Starts off as unverified. Can be proven true / false, or remain unverified.

THREE STUDIES

- I'll be discussing three studies:
 - 1) Assessing the ability of people to verify social media.
 - 2) Detecting rumours needing verification.
 - 3) Attempting to predict the veracity of viral social media stories.

STUDY 1: VERIFICATION BY (UNTRAINED) HUMANS

- How well would humans do in verifying social media content?
- What are the factors that lead to optimal verification by humans?

EPISTEMOLOGY RESEARCH

- Fallis (2004): we put together multiple factors when determining if something is true.
- For example:

"The Empire State Building, located in San Francisco, has 102 floors."

EPISTEMOLOGY RESEARCH

- Fallis (2004): we put together multiple factors when determining if something is true.
- For example: "The Empire State Building, located in San Francisco, has 102 floors."
- The Empire State Building is in NYC, so.. is the number of floors correct?
- It actually is, but most probably we wouldn't trust.

- Fallis (2004) stated that the key factors we relying on include:
 - Authority.
 - Plausibility and Support.
 - Independent Corroboration.
 - Presentation.

- Our dataset included 332 popular pictures (34.9% fake) that were tweeted while the hurricane was in the NYC area.
- Through crowdsourcing, we asked workers to determine the veracity of pictures.
- We showed them different features, e.g.:
 - Only user info (picture not shown) -> Authority.
 - Multiple tweets with the same tweet -> Independent corroboration.
 - Etc.

	Р	R	F1
Authority	0.849	0.546	0.665
Plausibility	0.748	0.880	0.809
Picture	0.825	0.829	0.827
Corroboration	0.739	0.903	0.813
Presentation	0.674	0.583	0.625
Tweet	0.838	0.931	0.882
Random	0.651	0.5	0.565

	Р	\mathbf{R}	$\mathbf{F1}$
Authority	0.849	0.546	0.665
Plausibility	0.748	0.880	0.809
Picture	0.825	0.829	0.827
Corroboration	0.739	0.903	0.813
Presentation	0.674	0.583	0.625
Tweet	0.838	0.931	0.882
Random	0.651	0.5	0.565

- Overall **best** when they looked at the **entire tweet**: image + text + user.
- Best **precision**, however, when looking at the **user info** only.
- **Repetition bias:** seeing multiple tweets for the same image (corroboration) leads to a tendency to believe that more cases are real. 22

- **Great** about the Twitter interface:
 - We see all tweet text + timestamp + basic user info together.

- Not so great about the Twitter interface:
 - We see very limited user info!
 - More user info needed, e.g. number of followers, user bio.

DETECTING RUMOURS

DATA COLLECTION IS CHALLENGING

- How to identify rumour data?
- How to make the dataset representative?
- How to build a sufficiently large dataset?
- How to get reliable data and labels?

BOTTOM-UP DATA COLLECTION

- Keyword-based data collection led to very large datasets for each datasets:
 - Data needed sampling.
 - We considered different sampling strategies.
 - Ended up choosing a popularity-based sampling strategy, i.e. more than N retweets, assuming that:
 - Rumours will be popular if they garner interest.

ANNOTATION OF RUMOURS

• Annotating rumours (i.e. needing to be checked) vs non-rumours.

RUMOUR DETECTION

- **Task definition:** Given a stream of tweets linked to an event (e.g. breaking news), determine if each of these tweets constitutes a rumour or non-rumour.
- Motivation: rumours, as unverified pieces of information, need flagging as such.

RUMOUR DETECTION

RUMOUR DETECTION

- Intuition: whether or not a tweet is a rumour depends on context, i.e. what is being reported in preceding tweets.
- Proposed method: Conditional Random Fields for sequential modelling.

Classifier	Р	R	F1
SVM	0.337	0.483	0.397
Random Forest	0.275	0.099	0.145
Naive Bayes	0.310	0.723	0.434
MaxEnt	0.338	0.442	0.383
CRF	0.667	0.556	0.607

- Intuition: some users are more likely to spread rumours, so user info can be useful to detect rumours.
- **Problem:** many users in test data are new, unseen in training data.

- Intuition: some users are more likely to spread rumours, so user info can be useful to detect rumours.
- **Problem:** many users in test data are new, unseen in training data.
- **Proposed solution:** based on the theory of homophily, users will follow others like them, i.e. if a user follows others who spread rumours in the spread, they're likely to spread rumours themselves.

- **CRF:** no user info.
- **CRF** + **RR**: user's own rumour ratio (from user's history, how many rumours vs non-rumours they posted).
- **CRF + HP:** average rumour ratio of followed users.

- **CRF:** no user info.
- **CRF** + **RR**: user's own rumour ratio (from user's history, how many rumours vs non-rumours they posted).
- **CRF + HP:** average rumour ratio of followed users.

Classifier	Р	R	F1
CRF	0.667	0.556	0.607
CRF + RR CRF + HP	0.654 0.633	0.593 0.635	0.622 0.634

AUTOMATED VERIFICATION OF VIRAL STORIES

CELEBRITY DEATH HOAXES

Torrealba Daniel added 3 new photos. Yesterday at 9:02 AM · 🕥

SO LONG CHAMP

Sylvester Gardenzio Stallone died early this morning after his battle with prostate cancer, the actor kept his illness a secret, but in the end he couldn't beat it.

🏚 - Rate this translation

officialslystallone 🛛 • Follow

officialslystallone Please ignore this stupidity... Alive and well and happy and healthy... Still punching!

Load more comments

jmooshl Sly is a zombie?! I smell a movie...

matthewemersonn Please delete that photos on instagram

daviddegiorgiomartins Shame on this mf stupidity people who did this

marcosrodriguess_17 Deus te abençoe sempre em nome de Jesus Cristo

negro_roket 😄 😄 😄 saludos stallone desde chile clclclclcl

whereishassan yessss

clvnmrgka @toarvincentiuss hoax

samuel_hdtr 😸 😸 😸 😸 🐯 🐯 💭

Q Q 415,733 likes 21 HOURS AGO

Add a comment...

COLLECTION OF SOCIAL MEDIA HOAXES

- Collection of **death reports (RIP + person name)**, e.g.:
 - "RIP Elizabeth II, she was so inspiring."
 - "RIP Elizabeth II oh dear :("
 - "Sad to hear about the passing of RIP Elizabeth II"
 - "Those posting RIP Elizabeth II, stop it!"

COLLECTION OF SOCIAL MEDIA HOAXES

- Easy to verify (post hoc) using Wikidata.
 - "RIP Elizabeth II, she
 - "RIP Elizabeth II oh c
 - "Sad to hear about t
 - "Those posting RIP E

VIKIDATA	Item Discussion	(Q9682)	
	queen of the UK, Canada	a, Australia, and New Zealand, and head of the Commonwealth of Nations	
	date of birth	 21 April 1926 Gregorian 6 references 	
	place of birth	Mayfair Iocated at street address 17 Bruton Street, London (British English) 1 reference	
	father	ê George VI	

WIKIDATA ENTRY

{"id":"8023",

"name": "Nelson Mandela",

"birth":{"date":"1918-07-18","precision":11},

"death":{"date":<u>"2013-12-05</u>","precision":11},

"description":"former President of South Africa, anti-apartheid activist",

"aliases":["Nelson Rolihlahla Mandela", "Mandela", "Madiba"]}

Names to match

Death date to compare with

COLLECTION OF SOCIAL MEDIA HOAXES

1) Collection of tweets with **keyword 'RIP'** in it for 3 years (Jan 2012 – Dec 2014).

2) Sample tweets matching the 'RIP person-name' pattern.

3) Sampling, i.e. names with 50+ occurrences on a given day.

4) Semi-automated labelling.

- 5) 4,007 death reports (13+ million tweets):
 - 2,301 real deaths.
 - 1,092 commemorations.
 - 614 death hoaxes.

RESULTS

	0	1'	2'	5'	10'	15'	30'	60'	120'	300'
social	.427	.495	.509	.510	.510	.528	.535	.577	.594	.591
w2v	.641	.655	.658	.663	.667	.670	.680	.696	.699	.698
social+w2v	.612	.634	.661	.671	.671	.677	.675	.709	.709	.724
gw2v	.556	.565	.574	.608	.612	.618	.623	.645	.648	.664
social+gw2v	.569	.590	.599	.616	.633	.647	.663	.679	.688	.686
infersent	.637	.640	.653	.664	.683	.681	.697	.722	.734	.759
social+infersent	.643	.655	.670	.678	.691	.688	.698	.731	.748	.767
multiw2v*	.669	.676	.691	.703	.714	.722	.723	.721	.738	.741
social+multiw2v*	.647	.677‡	.696‡	.707‡	.716‡	.725‡	.724†	.744†	.752	.748

Proposed methods indicated with a star (*). Best method highlighted in bold and second-best method for different types of features highlighted in italic. \ddagger : statistically significant at p < .01, \ddagger : statistically significant at p < .05.

RESULTS: USING SLIDING WINDOWS

window	0	1'	2'	5'	10'	15'	30'	60'	120'	300'
0.1	.647	.385	.399	.413	.423	.442	.452	.459	.466	.514
0.25	.647	.422	.468	.476	.478	.519	.522	.547	.582	.617
0.5	.647	.228	.284	.369	.537	.544	.575	.589	.642	.673
0.75	.647	.253	.319	.396	.554	.580	.598	.626	.671	.718
1.0	.647	.677	.696	.707	.716	.725	.724	.744	.752	.748

• What if we use the last few minutes of data only?

- Limited capacity when verification is done without linking to evidence.
 - Verification linked to evidence is showing better performance.

• Hoaxes tend to have fewer distinct users posting them.

- Hoaxes tend to have fewer distinct users posting them.
 - BUT they are retweeted by more distinct users!

- Hoaxes tend to be shorter in length, not as carefully crafter as true stories?
 - They tend to lack links and pictures.
 - Presumably less evidence linked to them?

• And hoaxes tend to spark more questions!

DATA & PAPER AVAILABLE

Twitter Death Hoaxes dataset

Version 3 V Dataset posted on 25.03.2019, 18:55 by Arkaitz Zubiaga

This is a dataset of death reports collected from Twitter between 1st January, 2012 and 31st December, 2014. It was collected by tracking the keyword 'RIP', and matching those tweets in which a name is mentioned next to RIP. Matching names were identified by using Wikidata as a database of names. For more details, please refer to the paper: https://arxiv.org/abs/1801.07311

Authors: 🍘 Arkaitz Zubiaga, 🎩 Aigi Jiang Authors Info & Af	filiations
Publication: ACM Transactions on the Web • August 2020 • A	rticle No.: 18 • https://doi.org/10.1145/3407194
99 0 🖍 23	🌲 🗈 💔 🔒 Get Access
Abstract	
The unmoderated nature of social media enables	the diffusion of hoaxes, which in turn
jeopardises the credibility of information gathere	d from social media platforms. Existing
research on automated detection of hoaxes has th	he limitation of using relatively small
datasets, owing to the difficulty of getting labelle	d data. This, in turn, has limited research

https://figshare.com/articles/Twitter_Death_Hoaxes_dataset/5688811

https://dl.acm.org/doi/10.1145/3407194

AUTOMATED VERIFICATION PIPELINE

SOCIAL MEDIA STORY TIMELINES

- **Orange** while story is still **unverified**.
- Green / red indicate story has been proven true / false.

DISCUSSION

- Automated fact-checking is very challenging.
- More research needed considering the **entire pipeline**, i.e. starting from detecting check-worthy claims.
- Stories can be **unverified**, i.e. lacking evidence for verification.
 - We need to consider this in models.
- More research needed in **verification by linking claims to evidence**.
 - Automatically finding evidence is however challenging.

STAY TUNED

QUESTIONS?

Zubiaga, A., & Ji, H. (2014). Tweet, but verify: epistemic study of information verification on twitter. Social Network Analysis and Mining, 4(1), 163.

Zubiaga, A., Liakata, M., & Procter, R. (2017, September). Exploiting context for rumour detection in social media. In International Conference on Social Informatics (pp. 109-123). Springer, Cham.

Zubiaga, A., & Jiang, A. (2020). Early detection of social media hoaxes at scale. ACM Transactions on the Web (TWEB), 14(4), 1-23.

Lathiya, S., Dhobi, J. S., Zubiaga, A., Liakata, M., & Procter, R. (2020). Birds of a feather check together: Leveraging homophily for sequential rumour detection. Online Social Networks and Media, 19, 100097.