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What |Is Fake News?
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Fake News & Related Concepts

Definition of fake news

Fake news is intentionally false N\
news published by a news outlet. -

. ——
e Intention : Bad
- Authenticity : False
 News or not? News

A broader definition: F ' p

Denzel Washington Backs Trump In The Most Epic Way

 Fake news is false news Possible

While the rest of liberal Hollywood is still trying to demonize Donald Trump, Denzel
Washington is speaking out in favor of the president-elect. “We need more and

BREAKING: Obama And Hillary Now Promising Amnesty
To Any lllegal That Votes Democrat




Concept Authenticity Intention News?
Deceptive news Non-factual Mislead Yes
False news Non-factual Undefined Yes
Satire news Non-unified? Entertain Yes

Disinformation Non-factual Mislead

1sinformation Undenned
Cherry-picking | Commonly factual | Mislead | Undefined
Clickbait Undefined Mislead Undefined
Rumor Undefined Undefined | Undefined

For example, Disinformation is false information [news or non-

news] with a bad intention aiming to mislead the public.
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Fake News &
Related Concepts

Distinguishing fake news from
other related concepts

Open Problems:

« How similar are writing
styles or propagation
patterns?

Can we use the same
detection strategies?

Can we distinguish between
them? e.g., fake news from
satire news
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Fake News Detection

«  Knowledge-based Fake News Detection
+ Style-based Fake News Detection

- Propagation-based Fake News Detection
- Source-based Fake News Detection

Stage 1: Creation

Stage 2: Publication Stage 3: Propagation

! i
A news article i i _
’ : I o000 ] <+Feedback
Headline Wl A i — E O *
. Bodytextll A ! —— | <rPublisher ¢ |
Bodyimage A ! I (Source web) E Propagation path 4
i 4t E User %
& <-Creator % I e ]

EI (Spreader) 4

M Knowledge-based A Style-based @ Propagation-based % Source-based
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Challenges and Highlights

I. Limited Ground Truth
II. Limited Text
. Unknown Intent of Fake News Spreaders
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- you can collect data: ReCOVery dataset .

Table 1: Data Statistics 2100
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Figure 8: Word Count

Figure 6: Author Count

X. Zhou, A. Mulay, E. Ferrara, R. Zafarani
ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research

Figure 9: Word Cloud

Figure 12: Spreading Frequency

Figure 13: News Spreaders  Figure 14: Follower Distribution

Figure 15: Friend Distribution
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|. and more data....

= CHECKED (Chinese COVID-19 Fake News Dataset) Dataset

Table 2 Statistics of CHECKED Data

Real Fake All

# Microblogs 1,776 344 2,120
with images 1,153 53 1,206
with video 568 106 674
with reposts 1,167 229 1,396
with comments 1,167 292 1,459

# Reposts of microblogs 15,049 37,443 52,126
# Comments of microblogs 678,249 15,399 691,004
# Likes of microblogs 56,530,505 445,116 56,975,621
# Weibo users 690,755 51,674 737,347
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Fig. 3 Word
Cloud

Fig. 2 Distribution of Selected Keywords in Collected Microblogs
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Chen Yang, Xinyi Zhou & Reza Zafarani
CHECKED: Chinese COVID-19 fake news dataset
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l. Or you can design methods that

require limited data: Fake News Early Detection
Why is Fake News Early Detection important?

* The more fake news spreads, the more likely * Once people have trusted the fake news, it
can be difficult to correct users’ perceptions

for people to trust it

Echo chamber effect

Term Phenomenon
Attentional bias Exposure frequency - individuals
Validity effect tend to believe information is

correct after repeated exposures.

Bandwagon effect

Normative influence
theory

Social influence

Social identity theory

Availability cascade

Peer pressure - individuals do
something primarily because
others are doing it and to
conform to be liked and accepted
by others.

Term |Phenomenon
Backfire | Given evidence against their beliefs,
effect  |individuals can reject it even more strongly

Conservatis | The tendency to revise one’s belief

m bias | insufficiently when presented with new

evidence.

Semmelwei | Individuals tend to reject new evidence as

s reflex | it contradicts with established norms and

beliefs.
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Fake News Early Detection: A Theory-driven Model
Xinyi Zhou, Atishay Jain, Vir V. Phoha, Reza Zafarani

Leakod & 1t Weree Than Anvone Style representation Style classification

Could Have Imagined...
Ty _,_79_5_” ,_q_."9_l|

Syrian people 1‘] . SVM I b_ I .
le syrien - > RF . nterpretability
\ e :
- => B ® => XGBoost '::> Empirical relations
PR O
Undeutsch Deceptive statements differ in content style o ]
hypothesis and quality from the truth. Disinformation
Reality Deceptive claims are characterized by higher )
monitoring levels of sensory-perceptual information. Deceptive
- : : . claim
Four-factor Lies are expressed differently in emotion and
theory cognitive process from the truth. Deceptive
Information Extreme information quantity often exists in news
Manipulation deception.
theory




Nd Syracuse University

Fake News Early Detection: A Theory-driven Model
Xinyi Zhou, Atishay Jain, Vir V. Phoha, Reza Zafarani

l. Writing Style

Level Feature(s)
Lexicon BOWSs
POS Tags
Syntax
CFGs
Discourse RRs

=

Conaon

cheese

onsion

If 1 drink too
much alcohol

| am
alcoholic

If | drink too
much Fanta

| am
Fantastic

CFG POS Lexicon

RR

rat’

‘cheese’

noun

verb
S>NPVP
DT - ‘the’

Evidence

Condition

2
-

N B N R B N
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Fake News Early Detection: A Theory-driven Model
Xinyi Zhou, Atishay Jain, Vir V. Phoha, Reza Zafarani

Feature(s) Example | Tool & Ref.
#/% Swear Words “damn”
#/% Netspeak “btw” Linguistic
#/% Assent “OK" .
Informality | #/% Nonfluencies “umm” Inquiry and
_ Word Count
#/% Fillers “vou know” (LIWC)
Overall #/% Informal /
Words
.. . |#/% Biased Lexicons “attack” (1]
Subjectivit 40 Raport Verbs “announce”
y #/% Factive Verbs “observe” [2]
#/% Unique Words / /
#/% Unique Content “car” LIWC
Words
Diversity |#/% Unique Nouns /
#/% Unigue Verbs / POS
#/% Unique Adjectives / Taggers
#/% Unigue Adverbs /

[1] Marta Recasens, et al. Linguistic Models for Analyzing and Detecting Biased

Language. ACL, 2013.
[2] ) Hooper. On Assertive Predicates in Syntax and Semantics, New York, 1975.
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Fake News Early Detection: A Theory-driven Model
Xinyi Zhou, Atishay Jain, Vir V. Phoha, Reza Zafarani

lll. Perceptual Process V. Cognitive Process
#/% See #/% Insight “think”
#/% Hear #/% Causation “because”
#/% Feel LIWC #/% Discrepancy “should”
Overall #/% Perceptual Processes #/% Tentative ‘perhaps” | LIWC
#/% Certainty “always”
#/% Differentiation “but”
Overall #/% Cognitive Processes

IV. Sentiment

#/% Positive Words

#/% Negative Words

#/% Anxiety Words

#/% Anger Words

#/% Sadness Words

Overall #/% Emotional Words
Avg. Sentiment Score of Words| NLTK

VI. Quantity

# Characters

LIWC # Words

# Sentences

# Paragraphs

Avg. # Characters Per Word
Avg. # Words Per Sentence

Avg. # Sentences Per Paragraph
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Fake News Early Detection: A Theory-driven Model

Xinyi Zhou, Atishay Jain, Vir V. Phoha, Reza Zafarani

Within/Across-level Performance

Within-level

1. Lexicon / Deep Syntax
(80%~90%)

2. Semantic / Shallow Syntax
(70%~80%)

3. Discourse
(60%~70%)

Across-level > Within-level
(exclude RRs)

PolitiFact BuzzFeed

Language Level Feature Group XGBoost RF XGBoost RF
Acc. F1  Acc. F1 [Acc. F1 Acc. F1
Lexicon BOW .856 .858 .837 .836(.823 .823 .815 .815
. Shallow Syntax POS .755 755 776 .776|.745 .745 .732 .732
‘I’_‘g‘t,';'lg Deep Syntax CFG .877 .877 .836 .836|.778 .778 .845 .845
Semantic DIA+CBA .745 748 737 .737|.722 .750 .789 .789
Discourse RR .621 .621 .633 .633|.658 .658 .665 .665
Lexicon+Syntax BOW+POS+CFG .858 .860 .822 .822|.845 .845 .871 .871
Lexicon+Semantic BOW+DIA+CBA .847 820 .839 .839|.844 .847 .844 .844
A;":“”:S Lexicon+Discourse BOW+RR .877 .877 .880 .880(.872 .873 .841 .841
Levels Syntax+Semantic POS+CFG+DIA+CBA .879 .880 .827 .827|.817 .823 .844 .844
Syntax+Discourse POS+CFG+RR .858 .858 .813 .813(.817 .823 .844 .844
Semantic+Discourse DIA+CBA+RR .855 .857 .864 .864 |.844 .841 .847 .847
All-Lexicon All-BOW .870 .870 .871 .871|.851 .844 .856 .856
’_‘r‘;‘rr‘f: All-Syntax All-POS-CFG .834 .834 .822 .822|.844 .844 822 822
Levels All-Semantic All-DIA-CBA .868 .868 .852 .852|.848 .847 .866 .866
All-Discourse All-RR .892 .892 .887 .887|.879 .879 .868 .868
Overall .865 .865 .845 .845|.855 .856 .854 .854
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Fake News & Deception

Supportive

Theory

Undeutsch
hypothesis

Deception

Differs in content
style and quality
from truth

Fake News

% Consistent

Has a higher levels of

Reality sensory-perceptual *-* Similar levels to
monitoring information than the truth

truth

. . o, [ N H

Four-factor Differs in cognitive - .C_arrl_es less |
theory process from the cognitive information

truth than truth

Q

Information Often refers to ‘e’ More words in
Manipulation  extreme information headlines while less in
theory quantity body-text.

p-value<0.1

1 1 1
— Fake Niws
T News
b
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(h) Cognitive Process (BuzzFeed)
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Il. Limited Text

- Pursue Multi-Modal Fake News Detection

* Few existing studies have explored the relationship (similarity) between news text
and images to help detect fake news.

Washington State Legislature votes to chanFe its
name because George Washington owned Slaves

The legislature of Washington State has met in special session and overwhelming voted to change
the name of the State. Since George Washington owned Slaves, it is improper for this State to be
named after him. Due to the great support provided to the cause of eliminating the history of
slavery in the United States by George Soros, the Legislature of Washington has chosen the new

name of Soros State. The change in name will take effect on November 1st, 2017 once the
Governor of Washington signs the bill

X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-Aware
Multimodal Fake News Detection,
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Why is such similarity worth exploring?

o Fake news writers actively use attractive but
irrelevant textual and visual information to

Chrissy Teigen and John Legend Have First Date Night
fo r m a fa I S e Sto ry Since Welcoming Son Miles: Pic!

o To attract the public attention

o Sometimes it is passive behavior
o Cannot find related and non-manipulated images
to support false claims
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Washington State Legislature votes to change its
name because George Washington owned Slaves

Fake news prediction
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SAFE: Feature
Representativeness/joint Learning

Vg o s s el ik Lo DL B
t
VvV
M, (t,v) =1 -softmax(W,(t ®v) + b,),
(V) (W(t&v)+by) L(0:,0,,0,) = aly(0:,0,,0,) + BL(0:,0,),
[,p(gt,gv,gp) = _E(a,y)N(A,Y) (y logMp(t, V) + (1 — y) log(l — Mp(t,V))), A R
. 0;,.0,.0,) =arg min £L(60,,0,.,0,).
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Experiments: General Performance

Result on multiple modalities:
[

]
Textual + Visual + Relational >

mAcc| PolitiFac A .
0.91|[F1 | ¢ _ | 0ol F GossipCop
0.8+ _ ] — M
. . . — 0.8r
Textual + Visual information 0.7+
o  SAFE vs att-RNN, SAFE\S, SAFE\W 0.6 07
e Textual + Visual = Relational information  os! 06"
O et e oW L aFE e eV oS oW pFE
: : SRFEY G pFEY O pf B ol SPFE g pFET o pF T e o
Multi-modal > Single-modal methods s °
. > Gi ) ) .

e Multi-modal > Single-modal information ITWOTVG G190 att- RN TSARE?

©  SAFE, SAFE\S, SAFE\W, att-RNN Vs Politi- |Acc.| 0.822 | 0.649 0.769 || 0.874

LIWC, VGG-19, SAFE\T, SAFE\V Fact F. | 0815 | 0.720 0.826 ||0.896

Among single-modal methods Gossip- |Ace.| 0.836 0.775 0.743 0.838
, , Cop Fi1 | 0.466 | 0.862 0.846 |/ 0.895
e Textual > Visual infor.
i: Text-based  : Image-based
o LIWC vs VGG-19
o SAFE\V vs SAFE\T

i: Multi-modal
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Experiments: Case Studies

"Face the Nation" transcripts, 98 Degrees' 2017 Macy's Parade
August 26, 2012: Rubio, Performance Will Take You Right Back
Priebus, Barbour, Blackburn ___To The '90s

Examples of true
news articles:

(a) s = 0.966 (b) s =0.975

Washington State Legislature votes to changeits ~ MORGUE EMPLOYEE CREMATED BY
Examp les of name because George Washington owned Sfaves  MISTAKE WHILE TAKING A NAP
i Beaumont, Texas | An employee of the jefferson County
morgue died this morning after being accidentally cremated
by one of his coworkers.

fake news articles:

(b) s =0.044

Chrissy Teigen and John Legend Have First Date Night
Since Welcoming Son Miles: Pic!

(c) s =0.983

Angelina Jolie & Jared Leto Dating After
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l1l. Assessing Intent of Fake News Spreaders

A frequently observed Phenomenon: | v

Individuals can spread fake news unintentionally without recognizing its falsehood Sy —————
5% 2 SR

Our goal is to address some research questions:
1. Why does an individual unintentionally spread fake news?
2. How can we model and assess the intent of fake news spreaders?
3. Where can we obtain the ground-truth data to evaluate such models?

* If no such data is available, how can one collect it from scratch? l No eggs a day keeps AD away
4. How does modeling the intention of news spreaders help fake news
. T LEAREASEAGTER, B
detection and mitigation: SHAAIE! TS

Xinyi Zhou,Kai Shu, Vir V. Phoha, Huan Liu, Reza Zafarani, “This is Fake! Shared it by Mistake”: Assessing
the Intent of Fake News Spreaders, TheWeb Conference 2022 u
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Why? Psychological Interpretations for
Unintentional Fake News Spreading

* External Influence: a user trusting/spreading a frequently-posted idea due to

* Peer pressure, conforming to the behavior of others for being accepted by the
community (social identity theory [1]).

* Social Exposure, where more exposure increases one’s perceived accuracy of fake news
and leads to unintentional spreading (e.g., due to validity effect [2])

* Internal Influence: a user would trust and spread a fake story that matches his
or her preexisting knowledge

* Individuals tend to believe fake news articles that confirm their preexisting values and
beliefs [3])

[1] Michael A Hogg. 2020. Social identity theory. Stanford University Press
[2] Gordon Pennycook, Tyrone D Cannon, and David G Rand. 2018. Prior exposure increases perceived accuracy of fake news. Journal of experimental psychology: general 147, 12 (2018), 1865.
[3] Sendhil Mullainathan and Andrei Shleifer. 2005. The market for news. American Economic Review 95, 4 (2005), 1031-1053.
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Modeling Intention of Fake News
Spreaders

* Fake news spreading is more unintentional if the posting
behavior is affected more
 Externally (by the similar behavior of other users) and/or
* Internally (by the user’s similar past behavior)

* Rough Idea: Constructing an influence graph of posts to
capture pairwise influence among posts, where a (directed)
edge between two posts indicates the (external or internal)
influence flow from one post to the other.
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Intention Modeling of Fake News

Spreaders on Social Media

Consider a pair of posts p; and p;...

L2t {=HG=GLte=t u# ug

pb —X—> p pp —» P p‘ti_<tj>p’
t<t a#8,C#C LKt u=u,a*a

pp — P B, —— P B — P

(@) Without (upper fig.) (b) Large (up) v.s. Small (c) External (red) v.s. In-
v.s. With (down) Influence  (down) Volume of Influence  ternal (blue) Influence

Figure 3: Pairwise Influence of Posts p; and p;: (a) decides if
there is an edge from p; to p; in influence graph; (b) deter-
mines the edge weight; and (c) identifies the edge attribute.

. Cnenzee . «- User u _ Post content ¢

J ¥ 7/
5G kills. Burn it all.French industrialist calls for 5G
MORATORIUM amid Covid-19, conspiracy theories &
burning of masts

=

=) 1 I'T - TT 11

|
L1 1 1 1 L1 | L1 || 1=}

oncom _.Timet  -Shared news article a
French industrialist calls for 5G MORATORIUM amid Covid-19, conspiracy the...

’ ;
The CE@ of French telecoms firm Bouygues has called on the government to
postpdne auctions for 5G frequencies, citing the ongoing coronavirus _..
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Figure 2: An Illustration of a
Post p; = (aj,cj, tj, uj)
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Intention Modeling of Fake News
Spreaders on Social Media

(a3, €3, t3, uy)

— (a5, €4y ty, U)
Influence Graph G = (V, E, W) e . .
(ay, €3y ty, uy)
d V= {pl ,pz, veey pn} H . (ay, €55 t5, u,)
°(pi,pj)EE(=)ti<tjandai¢aj \ J
(] .. = . . X . . X . .
Wij =3Mai,a;) xSpi, pj) x iy ) -, g et
* S(.,.): Similarity function (mostly by designing
deep learning models for image/text) et u) . ‘/’

* T(.): A self-defined monotonically decreasing
decay function to capture users’ forgetting

—» Internalinfluence
—» Externalinfluence

Using derived weights, we can compute the
overall influence on each post (denoted as
affected degree)
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Method Evaluation: Data &
Annotation

Evaluation data is required that contains the ground-truth label on

* News credibility, i.e., whether a news article is fake news or the truth; and

* User intention, i.e., whether a user spreads a fake news article intentionally or
unintentionally.

Such datasets do not exist!

» Our strategy: Extend current datasets by annotating intention of fake news
spreaders.

How?



Data for Method Evaluation

Request labels: news credibility + spreader intent

Manual annotation
e 2 well-trained annotators

e 300 posts randomly sampled
o Intent: intentional / unintentional
o  Confidence:0/0.5/1
o  Justification & Time

e Cohen’s kappa: 0.61 (substantial)

e 119 posts: agree on intent with conf. 2 0.5
o  Small-scale, gold-standard, balanced

o Time-consuming: 5 min per post
4-5 months in total if annotating
24/7

MM- Re-

COVID COVery

# News Fake 355 535
True 448 1,231

# Tweets Sharing Fake News 16,500 26,657

Sharing True News 20,905

117,087
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Fake News Spreaders

- Intentional spreaders: Bots + trolls + correctors

Recognize News Falseness?

- Unintentional spreaders: Others Ves ——— No
- T
The task boils down to identifying eentionalSpreaders nintentionalSpreaders
bots, trolls, correctors and Malicious -~ enign
corresponding correction tweets.... menfiiny s

Software-controlled Human-controlled

Algorithm to simulate manual annotation

- Intentional: bots, trolls, correctors '_c_:gr_n_egt_o_r (verifier) ~ Correction
. Bots & trolls: often suspended, cannot be educated ! e gg“’ee“as“ares ! (verification)
A ° _re_e_nﬁs_u_aief’g ___1 | to afake claim

. Correctors: no need to be educated

« Unintentional: others ' remains in the throat for four days and
. at this time the person begins to

Table 1: Performance of Algorithmic Annotations on Intent ' cough and have throat pains. Drinking
of Fake News Spreaders | a lot of water, gargling with warm

' - - -
' water mixed with salt or vinegar
eliminates the virus = False

AUC Score Cohen’s x E
MM-COVID + ReCOVery 0.8824 0.7482 ! & newsmeter.in

MM-COVID 0.8857 0.7520 Elj Fact Check: Can gargling w:ith warm
ReCOVery 0.8000 0.6484 salt water prevent Coronavirus?




Method Evaluation

Our goal: unintentional fake news
spreaders have significantly greater
affected degrees than intentional ones

Results: unintentional fake news
spreaders have greater affected degrees
than intentional ones (bots, trolls, or
correctors)
e Manual & algorithmic annotation
e  Statistically significant
e  Results are stable even when
changing the hyperparameters in
the annotation algorithm

10° 10°

1071 ] B Inttlentlonlal
w W = = Unintentional
Q1072 o 1072
@] ' O

103 = |ntentional 10-3

= = Unintentional
10~ 10~ r
01 03 05 07 09 1072 1072 1077 10

Affected Degree Affected Degree

(a) MM-COVID (p << 0.001 with t-test) (b) ReCOVery (p < 0.01 with t-test)

Figure 4: Distribution of Affected Degree: Intentional Fake
News Spreaders v.s. Unintentional Fake News Spreaders
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(b) ReCOVery (p < 0.001 using t-test for the right)

Figure 6: Relation between Affected Degree and (L) Bot Score,
(M) Troll Score, and (R) Corrector Score. p: Spearman’s Cor-
relation Coefficient. ***: p < 0.001; **: p < 0.01; and *: p < 0.05.
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(a) MM-COVID (p < 0.001 by ANOVA)  (b) ReCOVery (p < 0.01 by ANOVA)

Figure 5: Affected Degree of Bots, Trolls, Correctors, and Oth-
ers (First Three: Intentional Fake News Spreaders; Others:
Unintentional Fake News Spreaders)
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Figure 7: Method Performance with Various Thresholds (***:
p < 0.001; **: p < 0.01; and *: p < 0.05)
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Syracuse University Intent +
Fake News Detection

|. Affected degree + traditional
machine learning

Features: affected degree + content + Il. Influence graph + deep learning

propagation patterns (109 features) .\ Loc learned by HetGNN? & classified

Classifier: XGBoost by XGBoost " fff%‘"

|

1
Table 3: Method Performance with Hand-crafted Features = p2 @ |
in Fake News Detection. Here, K: the first (earliest) K posts :
spreading the news available for news representation; Rank- az g.l P @ I
ing: feature importance ranking of affected degree of posts P4 @ [
in the prediction model. a3 E.I I p5 @ J

G: Influence Graph

K  AUC Score Ranking

Table 2: Method Performance (Using AUC Scores) with Heterogeneous Graph

10 0.918 (+0.009) 2 Neural Networks (HetGNN) in Fake News Detection
20 0912 (+0.015) 2
MM-COVID 30 0.927 (+£0.021 2
( ) MM-COVID ReCOVery
40 0.923 (+0.012) 2
Al 0.935 (+0.005) 3 % Labeled News 20% 40% 60% 80% 20% 40% 60% 80%
GRanDOM 0.829 0.856 0.876 0.902 0.647 0.654 0.660 0.674
10 0.891(+0.007) 5 GSupcRAPH 0.817 0861 0.890 0915 0.820 0.845 0.869 0.908
20 0.898 (:l:ﬂ.ﬂﬂ?} 3 G 0.869 0864 0902 0905 0.825 0.863 0.883 0.881
ReCOVery 30 0.903 (+0.004) 3
40 0.909 (+0.014) 4 a
All 0925 (£0.009) 5 Zhang, C., et al. (2019). Heterogeneous Graph Neural Network. KDD (pp. 793-803).
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Method's Prospects in Fake News
Mitigation
Personalized intervention: Developing diverse strategies for fake news spreaders

with various intentions to effectively and reasonably intervene with the spread of
fake news on social media. For example,

* Removing and blocking bots and trolls, as intentional and malicious spreaders;

* Educating and correcting unintentional fake news spreaders.

Can there be a new recommendation algorithm that not only recommend
interesting topics but also correction posts?

How effective are such algorithm in intervening with the spread of fake news?
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e Zhou, X., Shu, K., Phoha, V. V,, Liu, H., & Zafarani, R. (2022). " This is Fake! Shared it
by Mistake": Assessing the Intent of Fake News Spreaders. arXiv preprint
arXiv:2202.04752.

* Zhou, Xinyi, and Reza Zafarani. "Fake news: A survey of research, detection
methods, and opportunities.” arXiv preprint arXiv:1812.00315 (2018).

e Zhou, Xinyi, Jindi Wu, and Reza Zafarani. "SAFE: Similarity-aware multi-modal fake
news detection." arXiv preprint arXiv:2003.04981 (2020).

* Zhou, Xinyi, et al. "Fake News Early Detection: A Theory-driven
Model." arXiv (2019): arXiv-1904.

e Zhou, Xinyi, and Reza Zafarani. "Network-based Fake News Detection: A Pattern-
driven Approach." arXiv preprint arXiv:1906.04210 (2019).

e Zhou, Xinyi, et al. "ReCOVery: A Multimodal Repository for COVID-19 News
Credibility Research." arXiv preprint arXiv:2006.05557 (2020).

* Zhou, Xinyi, et al. "Fake news: Fundamental theories, detection strategies and
challenges." Proceedings of the twelfth ACM international conference on web
search and data mining. 2019.

* Yang, Chen, et al. "CHECKED: Chinese COVID-19 Fake News Dataset." arXiv preprint
arXiv:2010.09029 (2020).
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https://xinyizhou.xyz/papers/xzhou-kdd19-slides.pdf

ake News Research

undamental Theories,
tection Strategies &
pen Problems

Xinyi Zhou (https://xinyizhou.xyz/)
zhouxinyi@data.syr.d |

L & §

Vir Phoha

Chen Yang  Niraj Sitaula Kai Shu Emilio Ferrara Huan Liu  Jennifer Grygiel
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